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ABSTRACT 

By analyzing the motions of a thruster-controlled spacecraft, it is possible to provide on-line (1) thruster fault 
detection and isolation (FDI), and (2) vehicle mass- and thruster-property identification (ID). Technologies developed 
recently at NASA Ames have significantly improved the speed and accuracy of these ID and FDI capabilities, making 
them feasible for application to a broad class of spacecraft. Since these technologies use existing sensors, the 
improved system robustness and performance that comes with the thruster fault tolerance and system ID can be 
achieved through a software-only implementation. This contrasts with the added cost, mass, and hardware 
complexity commonly required by FDI. Originally developed in partnership with NASA - Johnson Space Center to 
provide thruster FDI capability for the X-38 during re-entry, these technologies are most recently being applied to the 
MIT SPHERES experimental spacecraft to fly on the International Space Station in 2004. The model-based FDI uses 
a maximum-likelihood calculation at its core, while the ID is based upon recursive least squares estimation. Flight test 
results from the SPHERES implementation, as flown aboard the NASA KC-135A 0-g simulator aircraft in November 
2003 are presented. 

INTRODUCTION 

Thruster-controlled spacecraft (vehicles, probes, satellites, etc.) can benefit from system identification (ID) 
and fault detection and isolation (FDI) systems. The FDI system, control system, state-estimation system, image 
processing, and other systems on-board or on the ground can benefit from accurate estimates of mass and thruster 
properties. FDI systems often use additional sensors such as pressure sensors in the thruster nozzles; however 
when building and operating smaller, less expensive spacecraft, there is a call for intelligent fault tolerance without 
requiring increased hardware complexity, cost, and mass. 

The algorithms presented here for FDI and mass- and thruster-property identification (ID) use existing 
navigation sensors such as gyros or accelerometers. Therefore, these added capabilities could be provided as a 
software-only addition to a new spacecraft or modification to an existing one. These algorithms can be implemented 
on-board using the spacecraft’s existing processor(s), on-board using a stand-alone processor, or on the ground, 
processing sensor information communicated to the ground stations from the spacecraft. 

                                                 
1 Portions of this research were performed with funding from NASA Headquarters, HQ AA, PWC 349-00, and by the 
NASA Intelligent Systems Program 302-10-10 (part of the CICT Program). 
2 Ed.Wilson@intellization.com 
3 Robert.W.Mah@nasa.gov, group lead of the Smart Systems Research Lab in the Computational Sciences Division 
(code IC) at NASA Ames Research Center 
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The algorithms have been developed through application in MATLAB software simulation [MATLAB 2003] to 
four space vehicles as shown in Figure 1: the X-38 vehicle 2014 (space-based test vehicle for the CRV, Crew Return 
Vehicle) [X38 2003] and Mini-AERCam (Mini-Autonomous Extravehicular Robotic Camera) [AERCam 2003], both 
developed at NASA Johnson Space Center; the NASA Ames Research Center Smart Systems Research Lab air-
bearing vehicle (S4), and the MIT SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental 
Satellites) experimental spacecraft to fly on the International Space Station [SPHERES 2003]. They are presently 
being implemented in hardware on the S4 and SPHERES. The same software is used on all four vehicles (except for 
the real-time SPHERES code which is a C-implementation of the algorithms), indicating the generic nature of the 
technology and its implementation. 
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Figure 1: Four of the vehicles successfully tested in simulation. Clockwise from upper left: X-38 v. 
201 with de-orbit propulsion stage; NASA Ames S4 air bearing vehicle; MIT SPHERES; JSC Mini 
AERCam. Hardware implementation and testing is currently underway on the S4 and SPHERES. 

This paper summarizes the algorithms, and reports on tests of the mass-property ID algorithms on the MIT 
SPHERES as flown on NASA’s zero-g KC-135A in November 2003.  

RELATED RESEARCH – FAULT DETECTION AND ISOLATION 

Several FDI approaches reported in the literature [Isermann 1984] perform well on a variety of applications. 
However, the on-off nature of the thrusters present in the class of applications addressed here limits the viability of 
many general-purpose methods. For example, if a thruster has failed off, it will appear to be working correctly at all 
times that it is not commanded to fire. This paper presents a general approach for this class of problems that has 
been validated through application to specific, realistic spacecraft applications. 

Deyst and Deckert [Deyst 1976] at MIT/Draper Lab developed a maximum-likelihood based approach for 
detecting leaking thrusters for the Space Shuttle orbiter’s RCS jets. The method for detecting soft failures was also 

                                                 
4 This since-canceled program was the original driver of the FDI basic research and development. The mass-property 
ID development was originally driven by a desire to provide accurate mass parameters for use by the FDI system. 
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extended to detect hard RCS jet failures. The maximum-likelihood method presented in that work is used and 
extended in this research. 

Wilson and Rock [Wilson 1995a] [Wilson 1995b] at Stanford University developed an FDI method based on 
exponentially weighted recursive least squares estimation using accelerometer and angular-rate sensors. A neural 
network then provided adaptive control reconfiguration to multiple destabilizing hard and soft thruster failures. This 
was experimentally demonstrated on a 3-degree-of-freedom air-bearing vehicle. 

Lee and Brown [Lee 1998] at JPL developed a leak monitoring system for the Cassini spacecraft that 
incorporated a model of the spacecraft. 

RELATED RESEARCH – MASS-PROPERTY IDENTIFICATION 

The basic difficulty in on-line mass property identification is that the mass parameters (center of mass, 
products and moments of inertia, mass) do not all appear linearly in the system’s equations of motion. The solution 
approach presented here, and taken by others, is to make assumptions regarding the system uncertainties, motions, 
disturbances, and available computational power, and then manipulate these equations into forms that can be 
addressed using existing techniques such as RLS or second order filters. 

Tanygin and Williams [Tanygin 1997] developed a least squares (LS) based algorithm to identify mass 
properties for a spinning vehicle during coasting maneuvers. 

Bergmann, et al. [Bergmann 1987] [Bergmann 1990] [Richfield 1988] developed an ID approach using a 
Gaussian second-order filter [Gelb 1974], which resembles an extended Kalman filter, but has extra terms to address 
the second order effects. This is significantly more complex and computationally intensive (by about two orders of 
magnitude) than the approach presented here, and may not produce better results for most spacecraft. Due to the 
extra complexity, it may be more susceptible to noise and parameter variations than the presented methods. It 
assumes perfect knowledge of thruster properties. 

Wilson and Rock [Wilson 1995a] [Wilson 1995b] developed an ID method based on exponentially weighted 
RLS using accelerometer and angular rate sensors. The acceleration created by each thruster (reflecting both mass 
and thruster properties) was identified. A neural network then provided adaptive control reconfiguration to multiple 
destabilizing hard and soft thruster failures. This approach (identifying thruster acceleration rather than separately 
identifying mass and thruster properties) is more direct (since thruster acceleration is the real value of interest from a 
control, estimation, or FDI standpoint), and probably better for vehicles with properties that are truly unknown (such 
as for the case where deflected thrusters are allowed, as on the vehicle tested in that research). However, for most 
vehicles, certain properties are well known, such as the thruster directions and locations in the structural frame, or the 
rate of fuel mass expulsion. The approach presented here can take advantage of that knowledge to get better 
estimates of the properties that are not well known. 

PROBLEM DEFINITION 

These technologies are designed for application to thruster controlled spacecraft equipped with motion 
sensors sufficient to provide an accurate estimate of angular acceleration. The FDI and ID performance will vary with 
the accuracy of this estimate. In the spacecraft studied here, gyros are used, but use of other sensors (video, star 
tracker, etc.) is possible as long as angular acceleration can be estimated and related to the corresponding thruster 
firing period. The failure mode types studied are listed below. The maximum likelihood FDI presented here requires a 
finite list of possible modes to choose from, although leak detection technology has also been developed to address 
soft failures. 

Both technologies are designed to run in a purely passive mode (with no controller intervention), but if 
control inputs can be guided, better and faster ID and FDI is possible. 

 

THRUSTER FDI AND MASS-PROPERTY ID TECHNOLOGIES 

The basic algorithms underlying these technologies have been published [Wilson 2002a] [Wilson 2002b]. 
Specifics on the major areas of development are as follows: 

MOTION-BASED THRUSTER FDI 
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A maximum-likelihood-based approach to thruster FDI for spacecraft was developed. The system uses gyro 
signals (and accelerometers if desired) to detect and isolate hard, abrupt single- and multiple-jet on- and off-failures. 
Faults are detected within one second and identified within one to five seconds in most cases for the X-38. In 
extended testing for the X-38, failures were correctly identified in 99.98% of the test cases. A detailed description of 
the FDI algorithm is presented in [Wilson 2002a]. 

Although the FDI operates 
fundamentally by using the seemingly trivial 
comparison of expected accelerations and 
estimated accelerations, the major challenge 
is doing this rapidly, passively, and 
accurately in the presence of significant 
sensor noise, temporal thruster variability, 
imperfectly known vehicle mass and thruster 
properties, and multiple fault modes having 
similar acceleration signatures. This figure 
shows the estimated disturbing angular 
acceleration (blue, green, red dots at each 
control update for each axis), along with the 
expected disturbing acceleration for the true 
failure mode (solid lines, becoming non-zero 
when thruster 11 is commanded to fire). The 

SNR is clearly very low in this case, and successfully isolating the failure mode is very challenging. This is an 
example of what necessitated the development of the full FDI system, in contrast to and as an extension of the 
simpler maximum-likelihood core developed by Deyst and Deckert [Deyst 1976]. 
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The motion-based thruster FDI technology was developed to optimize speed and accuracy for the X-38 
application. Since that was an exceptionally difficult application, once developed for the X-38, application to the other 
spacecraft examples has been very simple, requiring only setting updated parameters (thruster locations, etc.) and 
detection thresholds for the new spacecraft examples. 

MOTION-BASED SYSTEM ID 

Least-squares algorithms were developed to identify the vehicle center of mass, inertia matrix, inverse 
inertia matrix, and the force produced by each thruster. These algorithms have been implemented in both batch and 
recursive implementations. A novel approach to system ID was developed in which multiple recursive least squares 
(RLS) IDs run concurrently to ID parameters that appear as multiples of one another in the governing equations. The 
efficiency and robustness of this approach was judged to be sufficiently beneficial to offset the lack of theoretical 
optimality as might be offered by a higher order filter or nonlinear optimization. It was judged that the remaining 
unmodeled deviations from nominal (e.g., in thruster directions) would prevent the improved accuracy offered by 
those more complex approaches from actually being achieved. A detailed description of the ID algorithms is 
presented in [Wilson 2002b]. Some extensions since that publication are discussed briefly here. 

SPHERES implementation 

The Mass ID algorithms have been implemented in Embedded C++ for execution on the SPHERES TI 
TMS320C6701 floating point digital signal processor (DSP) on a Sundance SMT375 board. The code sends down 
telemetry for post-flight analysis, including raw gyro integers, filtered rates and angular accelerations, and ID results. 
The performance of the real-time code has been verified to match results of the original MATLAB code within 
precision expected with floating point processing. 

Angular acceleration estimation 

The on-board angular rate and acceleration estimator processes the 1 kHz gyro data corresponding to each 
control-update period (100 ms in this case). Since these results are also used for thruster FDI, it was decided that 
these filters should not assume any knowledge of the thrusters other than that the acceleration should be constant 
during the entire control-update period. So, for example, an abrupt, hard thruster failure could occur between one 
control segment and the next. Also driven by the need for on-line FDI, these filters must provide outputs in real-time, 
so non-causal smoothing filters were not considered. Although still under refinement, this estimator, whose example 
results are shown later, successfully provides accurate estimates in the presence of thruster latency and often-
significant gyro ringing while requiring a relatively small amount of compute time and program memory space. 
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Inertia matrix identification 

In addition to the inverse-inertia matrix identification, inertia matrix identification is now performed as well. 
Since the initial SPHERES zero-g experiments have shown a not-insignificant gyroscopic term ( ( )Iω ω× ), this term 
is now incorporated directly into the identification, rather than being handled as a calculated disturbance as had been 
suggested before. 

Thruster bias force identification 

Another identification added is the average force produced by each thruster (one parameter for each 
thruster). Since thruster direction is relatively more easily characterized before flight, thruster directions are still 
treated as known values. 

Thruster system characterization 

Ground-based testing of the SPHERES spacecraft has progressed towards developing accurate 
characterization of several thruster properties, including: mass-flow rate, as a function of the number of jets firing; the 
multi-jet scale factor that represents the reduction in thrust for each thruster when multiple jets are fired 
simultaneously.  

 

RESULTS AND DISCUSSION 

The thruster FDI and 
mass-property ID algorithms are 
being implemented on the 
SPHERES hardware for upcoming 
flight tests aboard the International 
Space Station (ISS). The MIT 
Space Systems Laboratory and 
Payload Systems, Inc. (PSI) are 
leading development of the 
SPHERES experimental spacecraft 
and coordinating its launch to the 
ISS, which is expected in 2004. The 
NASA Ames/Intellization team is 
working with MIT and PSI to 
integrate the algorithm 
implementations onto the 
spacecraft. A snapshot of a 3-D 
visualization of a 3-SPHERES 
experiment is shown here. In 
addition to the three SPHERES 
flying the ISS US Lab, ultrasonic 
beacons used by the global position 
and attitude determination system 
(PADS) can be seen in the lower 
left and upper right corners. 

In a near-final test prior to 
launch, the mass ID algorithm was 
tested in a series of KC-135A 

(“Vomit Comet”) flights from November 5-8, 2003, providing zero-g testing to complement the extensive 1-g air-
bearing table testing performed at MIT. 

The experimental results presented here were conducted on 8 November 2003 by Dustin Berkovitz and 
others from the MIT/PSI team, using SPHERES #5. Nine consecutive parabolas (nominally 20 seconds of zero-g, but 
practically, closer to about 10 seconds of free-floating time) were allocated for the Mass ID experiments. Data from 
other flights also proved useful, but the flight presented here contains the single longest set of data. 
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Through use of a “pause” feature in the control software, these 9 parabolas were all part of a single 
experiment consisting of about 90 seconds of zero-g flight time, with the system paused when handling was required 
and between parabolas. To test the response of the ID, a proof mass was attached using Velcro and removed 
between parabolas. To determine the effect of fuel slosh, a fuel tank pre-weighed at 28g was swapped in between 
parabolas as well. This mass approximately corresponds to full pressure (5.9 MPa = 860 psi) with no liquid CO2, so 
no fuel slosh should have been present for those parabolas.  

Although the mass ID algorithms ran on-board, due to disturbances when the SPHERES was handled (that 
occurred inadvertently when the system was un-paused), the analysis presented here is based on processing the 
telemetered rates and accelerations using the original MATLAB code, after cleaning the data to remove detected 
disturbances (handling to prevent contact with the walls of the aircraft) and periods of gyro saturation. The real-time 
software presently detects gyro saturation and does not update the ID during those times, but it does not presently try 
to detect handling.  
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Since PADS was non-operational for the KC flights, the 12 SPHERES thrusters were commanded in repeating, 24-
seconds long, open loop sequence as shown here. There were always either 0 or 2 thrusters firing to minimize the 
effect of uncertainty in thrust reduction with multiple thrusters firing. This sequence fires forward then backward on 
each of the 3 rotational axes, then the 3 translational axes, then all that backwards. Each pulse is 0.8 seconds long, 

followed by 0.2 seconds of 
coasting. These lengths 
were chosen to maximize t
firing time without caus
excessive gyro ringing. 
Although the ID algorithm
can accommodate arbitrary 
firing patterns, this simple 
sequence was chosen 
facilitate manual checking. 
Since some of the skipped 
telemetry samples are not 
shown here, the first 
repetition of the sequence 
begins at 22.4 seconds 
rather than 24.0. In this and 
many of the plots that follow, 
times when the system was 
paused are indicated with a 
vertical green line.  
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data during handling or gyro 
near-saturation (where the 
output is nonlinear). This 
data is the telemetered 
output of the on-board rate 
and acceleration estimator. 
The non-zero acceleration 
around 24 seconds is due to 
the gyroscopic term 
( ( )Iω ω× ), which was 
larger than had been 
expected due to the 
relatively high rates on 
multiple axes and a
of the SPHERES.  
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 at 1 kHz, were also 
downloaded during both 
paused and un-paused 
periods. This figure show
an example of the ringing 
induced whenever a thruste
is opened or closed. In this 

case, the end of an 800 ms firing period occurs at 
63.0 seconds. Prior to this, the signal is fairly clean, 
with a negative slope due to the applied torque. A 
latency of a few milliseconds follows 63.0, at which 
point the thrusters close for a 200 ms coasting period
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5 “The 338 Hz oscillation is result of an acceleration input in that frequency. The rate sensor is sensitive to inputs at 
that frequency. 338 Hz is the frequency difference between the drive tines (of the quartz tuning fork) and the pickup 
tines. If there is acceleration input at [this frequency], you will see an output [at that frequency].” [Loggins 2003] 
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difference is attributed to a general “disturbance,” even though it may be due to thruster variability, acceleration-
estimation error, etc. Any sample containing a disturbance vector exceeding a certain length was judged to h
been disturbed by handling. These data points were not used in the Mass ID updates, but the thruster firing data was 
used to update the burn-time integration (BTI) calculation that estimates the fuel mass. 
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 column, the rightmost bar indicates all data in that bin and beyond, most of which are very far beyond. 
These plots show a fairly clear distinction between disturbed and un-disturbed flight. To be safe, in places where 
disturbance was detected, neighboring samples were also removed, since they may have been disturbed, just not 
enough to clear the threshold. The un-disturbed data is surprisingly clean (as compared to the noise in the X-38 
disturbing acceleration calculations, for example), meaning that thruster FDI for this application should be 
straightforward. For example, the angular acceleration due to a single thruster is approximately 0.5-0.65 ra
the noise is sufficiently low to almost enable FDI based on a single detected deviation. 
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The values shown are deviations from the nominal mass properties. These “nominal” properties were in fact 
generate

d on 
inertia calculations. This error was observed consistently across all data sets from the Nov 2003 KC tests. The error 
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SUMMARY AND CONCLUSIONS 

Algorithms for thruster FDI and mass-property identification that can run using gyro signals only have been 
presente  
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d from the analysis of all Mass ID data sets with no proof mass from the November 2003 KC flights (14 
parabolas), since it was judged that they probably represented the best data available. The ID aims to identify the 
deviations of the dry vehicle properties, assuming the BTI calculation of fuel mass properties is done exactly.  

The identified proof mass-induced change in mass properties was about 80-85% of that expected base

can be partially attributed to un-resolved thruster characterization issues, and potentially inaccurate measurement of 
the proof mass location with respect to the geometric center. It will be investigated further prior to space testing.  

These are the nominal (and identified) values for the inertia (about CM) and CM (in coordinates centered
etric center of the vehicle) of SPHERES #5 with an empty fuel tank:  

0.022039 0.000196 0.000055− 
2

0.016
0.000196 0.019684 0.000215 kg-m , -0.821 mm
0.000055 0.000215 0.018165 3.082
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d. The maximum-likelihood-based thruster FDI algorithm is capable of reliably detecting and identifying hard,
abrupt single- and multiple-jet on- or off-failures. The computationally efficient identification algorithms reliably and 
accurately identify mass properties (inertia, inverse-inertia, center of mass) in the presence of several significant 
noise sources. 

Implem
C-135A aircraft have demonstrated their viability for on-board implementation. The flight data presented her

indicates that the on-board rate/acceleration estimator is providing accurate estimates despite thruster-induced gyro 
ringing. Some remaining thruster characterization is required before the numerical estimates can be considered 
accurate, but this data validates the performance of the mass identification algorithms and their real-time 
implementation. The much longer flight times expected on the ISS should enable excellent identification . Fuel slo
does not appear to be noticeable above the noise created by the gyro ringing and thruster variability; the effect of the 
fuel mass moving about averages out fairly well. Response to changed mass properties is shown to be fast enough to 
consider updating vehicle properties for a servicing spacecraft that may have docked with another spacecraft or 
added or removed a payload. 

Since these technolog
ith the thruster fault tolerance and system identification can be achieved through a software-only 

implementation. Although widely applicable, these technologies appear to be especially well suited for small, 
unmanned, maneuvering spacecraft that are subjected to significant mass-property uncertainty, due either to f
consumption, internal reconfiguration, or the carrying of variable payloads. 
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